
New project

- Unique locomotion two modes
- Robot that can walk and fly would be useful
- Drive and fly is easy, walk and fly has benefits

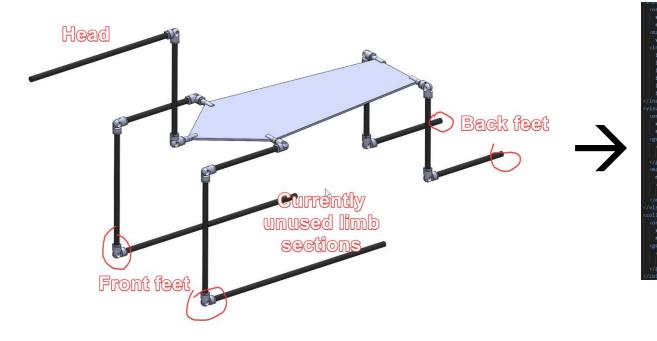
Methodology, steps, goal

Methodology:

- Use popular RL libraries: MuJoCo, Brax, Gymnasium, Stable Baselines
- Train on GPU for vastly more training (500x+ faster, 2000+ in parallel)

Steps:

- Build custom model (CAD)
- Setup model for simulation
- Train in batches while tuning hyperparams, architecture, policy, etc.
- Optimize for natural looking and reasonably fast gait


Goal / success definition:

- Sim a pterosaur model walking with a **reasonable-looking gait**
- Eventually (long after this class): build robot, get it walking, then train it to fly!

Model, URDF, MJCF

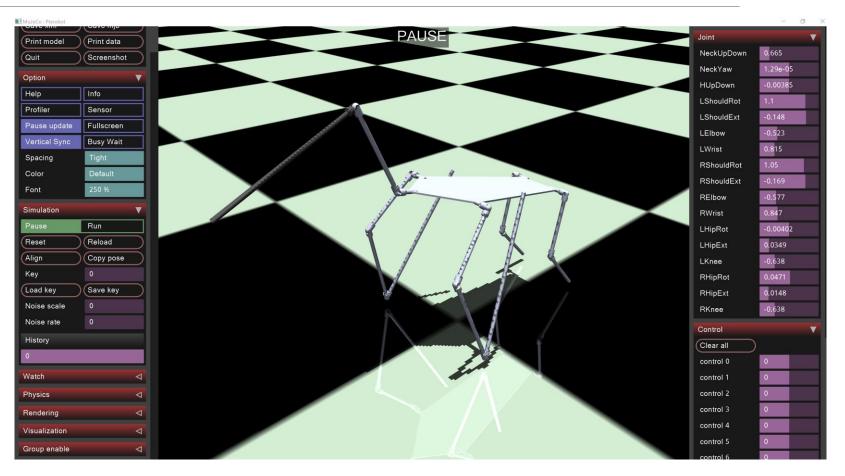
Got familiar with RL libraries through examples (MuJoCo, Gymnasium, Stable Baselines)

Modified example code: python and MJCF

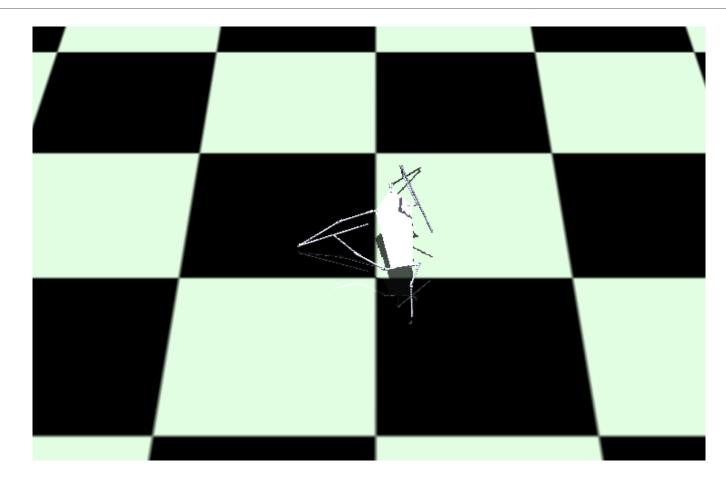
rigin
xyz="0.000645734028304206 8.91528981195044E-09 0.00570370451483394"
rpy="0 0 0" />
lass
value="0.000552160381379268" />
nertia
ixx="1.37754406098898E-08"
ixy="-1.03297312070412E-13"
ixz="1.40112923189962E-09"
iyy="1.28003109152368E-08"
iyz="-4.97237598467118E-14"
izz="8.09062527386862E-09" />
ertial>
ual>
rigin
xyz="0 0 0"
rpy="0 0 0" />
eometry>
<mesh< td=""></mesh<>
filename="package://BA14/meshes/NeckBase.STL" />
geometry>
aterial
name="">
<color< td=""></color<>
rgba="0.792156862745098 0.819607843137255 0.9333333333333333 1" />
material>
sual>
lision>
rigin
xyz="0 0 0"
rpy="0 0 0" />
eometry>
<mesh< td=""></mesh<>
<pre>filename="package://BA14/meshes/NeckBase.STL" /></pre>
geometry>
llision>
<pre><mesh filename="package://BA14/meshes/NeckBase.STL"></mesh> geometry></pre>

+ meshes

Training: Local (CPU)


Defined reward function

Set starting pose


Got more familiar with toolchain

Train!

..very slow training, no noticeable progress. Kinda just flopping around

Minimal training: break dancing

Training: Cloud (GPU)

GPU parallelization enables vastly faster training

Required library swaps because a lot of RL is still on CPU

Developed scripts to interpret policy and training (save all training data)

After WAY more training than on CPU, still no progress

Adjusted hyperparams:


- Reward weights
- Reward types
- Restricted some joint motion (wrist)
- Weakened actuators

```
2: brax PPO, converted humanoid env, left settings on default
3: reward weight changes:
    ctrl_cost_weight=0.5 -> 0.2,
    forward_reward_weight=1.0 -> 2.0,
    vertical_reward_weight=0.5 -> 1.0
4: 30mil timesteps
5: changed vel_x to pos_x in reward, 5mil timesteps
6: revert to vel_x, restrict wrist joints, weaken all actuators 5x (100->20), better starting pose
7: add reward_lowvel: -1/vel (encourage movement)
8: reward_lowvel_weight 1.0 -> 0.1
9: reward_lowvel_weight 0.1 -> 0.01 (still has some effect because it blows up as velocity goes to 0)
```

Some training: Yoga!!

Control o	-0.012
control 1	0.0572
control 2	0.31
control 3	-0.0905
control 4	-0.000105
control 5	-0.232
control 6	-0.29
control 7	-0.36
control 8	0.143
control 9	-0.0965
control 10	-0.271
control 11	0.109
control 12	0.0137
control 13	-0.0734

Training analysis

Training analysis

https://synapsomorphy.com/filehost/train2.html https://synapsomorphy.com/filehost/train6.html https://synapsomorphy.com/filehost/train7.html

Next steps

Continue tweaking reward

Continue restricting joint motion

More timesteps of training, especially if reward curves are promising

If walking soon: Evaluate different policies (Current: PPO)

Change mesh (potential for large speedup)